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The authors consider an homogeneous non-isotropic turbulence which develops with- 
out mean velocity gradient so that it should return to isotropy. This turbulence has 
been obtained by application of two successive plane strains to a grid-generated 
turbulence, and this configuration has already been described in a preceding paper. 
It is shown in particular that the nonlinear effects make no significant contribution 
to the rotation of the principal axes of the Reynolds stress tensor. In the case of the 
return to isotropy, an important parameter connected with the turbulent energy 
distribution between three directions comes into play. In  the present experiment it has 
a positive sign whereas in previous experiments this sign was negative. In  particular, 
the authors conclude that, when this parameter is positive, the return to isotropy is 
slower than in the opposite case. 

~ ~~ 

1. Introduction 
In a preceding paper (Gence & Mathieu 1979), the authors have considered the 

action of two successive plane strains on an initially isotropic turbulence. The first 
strain was used for obtaining an homogeneous but non-isotropic turbulence in which 
the principal axes of the Reynolds stress tensor are aligned with those of the strain. 
The second strain, the principal axes of which are different from those of the first 
strain through an angle a, was applied to this ‘oriented’ turbulence so that the 
Reynolds stress tensor should not possess the same principal axes as the ones of the 
strain. The distorting duct in which these two successive plane strains are obtained 
has been designed in the same way as in the experiment of Tucker & Reynolds (1968) 
but the initial cross-section is an ellipse and it is easy to show that there exists down- 
stream a circular cross-section. The duct can then be cut into two parts at  this section; 
accordingly the second part in which the second strain takes place can be turned by an 
angle a about the X, axis as indicated in figure 1. Therefore two successive plane strains 
of same intensity but with different principal axes are realized. In  particular it has 
been shown that, in the second strain, the principal axes of the Reynolds stress tensor 
which were initially aligned with those of the first strain, had a tendency to be realigned 
with those of the second strain. Moreover when the initial angle between the principal 
axes of the Reynolds stress tensor and those of the second strain was greater than 
an, it  has been observed that during a finite time the fluctuating motion gave energy 
to the mean one and that this phenomenon was linked to a forced decay of the aniso- 
tropy of the turbulence. 
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FIGURE 1. The distorting duct and the duct in which the return to isotropy takes 
place and the mean velocity a, along the X ,  axis. 

All these results concern a physical case in which the principal axes of the Reynolds 
stress tensor are not aligned with those of the strain. This situation leads to a typical 
aspect of the interaction between the mean flow and the fluctuating motion. In  such 
an experimental situation the dynamic of the turbulence depends not only on the 
interaction of the mean motion with the fluctuating motion but also on the self- 
interaction of the fluctuating motion. The unique way to obtain information on 
both the nonlinear effects and on the terms which are linked to these mechanisms is to 
suddenly suppress the second strain, so that the turbulence can develop downstream 
without a mean velocity gradient. This suppression has experimentally been achieved 
as in the experiment of Tucker & Reynolds (1968), by adding to the two successive 
plane strains a non-distorting duct 0.8 m in length (figure 1). 

The classical phenomenon of the return to isotropy can be observed in the non- 
distorting duct. Only a few experiments deal with this case, in particular those of 
Uberoi (1956), Mills & Corrsin (1959) and more recently of Tucker & Reynolds (1968). 
In the author's experiment, the history of the turbulent motion has been influenced 
by the action of the two successive plane strains so that we could expect some new 
phenomena and obtain additional information for the modelling of the return to 
isotropy. This mechanism has been studied very carefully in the physical space by 
Lumley & Newmann (1977) and more recently in spectral space by Cambon (1979); 
this author has attempted to extend to homogeneous (but non-isotropic) turbulence 
the eddy-damped quasi-normal approximation proposed by Orszag (1970) for the 
prediction of the spectrum of kinetic energy in isotropic turbulence. 

2. On the influence of the nonlinear effects on the rotation of the principal 
axes of the Reynolds stress tensor 

When the angle a between the principal axes of the two successive plane st>rains was 
different from both 0 and in, it was observed that the principal axes of the Reynolds 
stress tensor, which were initially aligned with those of the first strain, had a strong 
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FIGURE 2. Evolution of the angle 4 giving the position of the principal axes of the Reynolds 
stress tensor in the frame work (X2, S,) associated with the principal axes of the second 
strain. 

tendency to become aligned with those of the second strain. It follows that the rate 
of rotation of the principal axes of the Reynolds stress tensor is different from zero 
when the second strain is applied. We can speculate whether this rate of rotation 
remains different from zero when the action of the second strain is suddenly suppressed. 
Such an evolution would give some information about the action of the nonlinear 
terms on this rate of rotation. 

This nonlinear effect can of course be observed in the non-distorting duct placed 
after the second strain. The position of the principal axes of the Reynolds stress tensor 
is given by the angle 4 between these axes and those of the second strain which are 
used as a galilean frame R, (figure 1 )  even when the second strain is no longer applied. 
The experiment was carried out for two values of a which were )n and @T. It appears 
clearly in figure 2 that the angle 4 remains constant in the non-distorting duct placed 
after the second strain. It follows then that in this experiment the nonlinear mechan- 
isms associated with the self-interaction of the fluctuating motion have no signifi- 
cant effect on the rotation of the principal axes of the Reynolds stress tensor. It 
will be seen below that such a result gives information on the non-linear part of the 
pressure deformation correlations. 

To underline the role of the rate of rotation of the principal axes of the Reynolds 
stress tensor which will be defined by the antisymmetric second-order tensor w, the 
rate equations for the Reynolds stress tensor will be written with respect to its own 
principal axes. This new frame work R is of course non-galilean and has the rate of 
rotation w with respect to the galilean frame R,. The tensors P N L  and E represent 
respectively the non-linear part of the pressure deformation correlations and the 
viscous term appearing in the equation of the Reynolds stress tensor. More precisely 
we can write 
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the instantaneous fluctuating pressure being given by 
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AP au. aui 
p axiaxiy --=Lz 

which is nonlinear with respect to the fluctuating velocity u,, and 

The time derivatives in the frame works R and R, will respectively be termed: 

In the non-distorting duct, the rate equation of the Reynolds stress tensor can be 
written: 

However, it is easy to verify that 

Accordingly in the non-galilean frame work R we find that: 

=u@u.w-w.u@u+P~~+€. 

If are the principal values of the Reynolds stress tensor, we obtain in R the 
following expressions (without summation over the repeated indices) : 

These six equations can be split into two parts: the first three parts give the evolution 
of the principal values of the Reynolds stress tensor and the other three give the three 
independent components of the antisymmetric tensor 0. In  the present experiment, 
as shown in figure 2, it is found that dq5/dt is zero in the non-distorting duct, so that 

~ 

we can conclude: 

which implies from (7) : 

Hence it follows that the right-hand side of equation (4), which is the tensor 

w = 0, 

P?$+ ".I = 0. 

has the same principal axes as the Reynolds stress tensor. Such a result was not 
evident a priori since the nonlinear part of the pressure deformation correlation is a 



The return to isotropy of a homogeneous turbulence 569 

functional of the triple velocity correlations at two points M and M .  This functional 
is defined by 

1 pg" = - 
477 '!Ra 1 

where r = MM', and 
uPumu', (r ; t )  = uP(M, t )  urn ( M ,  t )  ui (MI, t )  I 

These conclusions agree with the closure law proposed by Lumley & Newmann 
(1977) for the right-hand side of the equation (4) which they wrote as 

B being the rate of dissipation. 
They denoted the term in brackets by - €ai, so that they should obtain 

2 
-& uiu, = - EQ,, - - a,,; -L* 3 

Here aij appears as a dimensionless traceless second-order symmetric tensor which 
they supposed to be an isotropic function of the Reynolds number Re, (L  being of the 
same order of magnitude as an integral scale) and of the tensor b defined by 

- 
q2 is the trace of the Reynolds stress tensor. 

Putting 
11 = biKbKi, 111 = bigbKjbji 

Lumley & Newmann obtain by means of the representation theorems 

@ij = p(II,III, Re,) bij +y(II, 111, ReL) (bigbKj - $11 Sij). 

- a,, = P$= + €,* - 8 a,,, 

(15) 

It then follows that the tensor Qi, which in fact is linked to the right-hand side of 
equation (4) by 

has the same principal axes as both the tensor b ,  and the Reynolds stress tensor, 
which agrees well with the author's own experimental results. 

As in this particular experiment the turbulence is strongly influenced by sudden 
changes in the behaviour of the mean flow, it is reasonable to admit that the preceding 
result can be extended to more general cases not exhibiting so rapid change in the mean 
flow distribution. This result appears as an aspect of the 'fading memory' of the 
turbulent motion which is often used as a basic hypothesis in the closure methods in 
physical space and in particular for obtaining a relation such as (15). 

(16) 

When the Reynolds number is large enough, we can write 

and hence the relation (10) shows that the tensor PG" must have the same principal 
axes as the Reynolds stress tensor. 
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FIGURE 3. Evolution of the invariant I1 when two successive plane strains are of 

opposite sign, a = tn. 
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FIGURE 4. Evolution of the invariant I1 for three values of the angle a hetween 
the principal axes of the two successive plane strains. 

3. On the influence of the sign of the invariant I11 on the dynamics of the 
return to isotropy 

Another aspect of the self-interaction of the fluctuating motion is the well-known 
tendency to return to an isotropic state, which means that the principal values of the 
Reynolds stress tensor tend to become equal as time increased. This has been observed 
in several experiments and in particular in those of Mills & Corrsin (1959), Uberoi 
(1956), and more recently in those of Tucker & Reynolds (1968). Some numerical 
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simulations carried out by Schumann & Patterson (1978) show the same phenomenon. 
The immediate consequence is that the different components of the tensor b defined 
by (13) and the invariant I1 introduced in (14) tends to zero. Starting from the 
equation (12), the rate equation of I1 can be written 

- 
E _ -  - - 2 - [@. . b . .  - 2111. 

dII 

at P2 a3 

A characteristic time of return to isotropy can then be defined as: 

which will be compared to the time of decay 

As in the return to isotropy we have 

- The line rD can also be written 
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Mills-Corrsin (1959) 
Uberoi (1950) 
Tucker & 
Reynolds (1968) 

Present experiment 
(whena = 0) 

Schumann & 
Patterson (1978) 
(m A2) 

Interval of Interval of Interval 
Interval of variation variation of variation 

>--- 
variation of I11 of I1 of ReL O f P  

I A 

-5 .3x  -0.34x 0.055 0,008 10 40 2 0 
- 7 . 1 5 ~  lo-' - 1-3 x lo-' 0.067 0.001 43 34 3.5 4.5 

+ 4 * 2 ~  lo-' +2.6 x 10-3 0.078 0,0420 400 450 1.5 1.9 

- 1 . 4 ~  -5.5 x 10 0.109 0.012 33 10 2.4 0.8 

TABLE 1. 

so that the ratio p of these two fundamental times appears as given by 

which can be considered as an important parameter of the dynamics of the return to 
isotropy. 

In the author's experiments, different levels of anisotropy, that is to say different 
values of the invariant I1 in the initial section of the non-distorting duct, can be 
obtained without difficulty by changing the value of the angle a between the principal 
axes of the two successive plane strains. The highest value of I1 is obtained when a 
equals zero and the lowest value when a equals in. In the second case it has been shown 
(Gence & Mathieu 1979) that the fluctuating motion is acted upon by the second strain 
to return to an isotropic state in a finite time, so that JI should possess a value slightly 
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different from zero at the entrance of the non-distorting duct, and hence, no sensible 
effect of return to isotropy can be observed (figure 3). 

To study the decay of the invariant I1 in the author's experiment, the three values, 
0, &r and Qn- were considered for a. Its evolution along the axis of the non-distorting 
duct is shown in figure 4 and that of 2 is given in figure 5 .  The ratio p can easily be 
derived from these results, and the figure 6 indicates that for the three values of a 
corresponding to three different initial values of 11, the characteristic time of decay is 
approximately 1.7 times greater than the time of return to isotropy. A comparison of 
the values of p obtained in the different experiments dealing with that physical situa- 
tion is given in table 1. It appears that all these values are greater than in the present 
case and that the mast interesting example which can be compared with the author's 
experiment when a = 0 is the experiment of Tucker & Reynolds (1968) where the 
initial value of I1 is very close to the values obtained in the present situation. Another 
interesting point which justifies such a comparison is that the Reynolds number 
linked to the fluctuating motion, which, in agreement with Lumley & Newmann 
(1977), can be written 

is approximately of the same order of magnitude in the two experiments. To under- 
stand the observed difference between the two values of p, it  is necessary to consider a 
third parameter which appears in the analysis of Lumley & Newmann (1977). They 
attempted to close the following set of equations: 

I 
where Qij is defined by (16) and the dimensionless unknown $ by 

Assuming that the turbulence has a fading memory, these authors closed the set (22) 
considering that (Dij and $ are functions of the Reynolds stress tensor, the rate of 
dissipation Z and the kinematic viscosity. They obtained then the expression (15) for 
aii and for $they wrote 

the different variables are defined by (13) and (14). It appears clearly that the 
invariant I11 must be taken into account to describe the dynamics of the return to 
isotropy. In  particular (15) and (20) lead to 

9 = $ ( I 1 7  111, Re,), 

(24) 
I11 
I1 

p = p(II,III ,  Re,) - 2 + - ~(11,111, Re,). 

In all the known experiments of return to isotropy the invariant I11 is a negative 
quantity but it is positive in the present experiment. It is possible to give a simple 
physical interpretation of this sign in the case of axisymmetric turbulence as indicated 
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FIGURE 7.  Scheme giving the physical meaning of the sign of the invariant 111 in 

the particular case of axisymmetrical turbulence. 
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FIGURE 8. Values of the turbulent Reynolds number Re, during the return to ieotropy 
the case when the two successive plane strains are identical (a = 0). 

in 

in figure 7. It can be verified that I11 is a positive quantity when the component of the 
Reynolds stress tensor along the symmetry axis is greater than the two others and is 
a negative quantity in the opposite case. 

Comparing the experiments of Tucker & Reynolds with the present configuration 
when a equals zero, we conclude that for the corresponding values of I1 and ReL, the 
function p (11, 111, Re,) must be a decreasing function of 111. It is simple to verify 
that our experimental results are in agreement with the hypothesis 
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FIGURE -lo-T=--- 9. The linear relation between the invariants I1 and I11 in the return to isotropy obtained 

in the case when the two successive plane strains are identical (a = 0). 

From (24) it follows indeed that it can be written as 

and the authors find that p and Re, (figure 8) are nearly constant so that the relation 
between I11 and I1 given by (26) should be a straight line, which is the case under 
consideration as shown in figure 9. Moreover this curve indicates that if P1(ReL) is 
positive for that Reynolds number, P2(ReL) must be negative so that p appears as a 
decreasing function of 111. To go further and to give accurate conclusions concerning 
the influence of the sign of the invariant 111, additional experiments of return to 
isotropy must be carried out, in which the values of I1 and Re, and the sign of I11 can 
be modified systematically. 

4. Conclusion 
The experiment has shown that during the return to isotropy the orientation of the 

principal axes of the Reynolds stress tensor does not change even in a situation where 
the history of the turbulence has been influenced by sudden changes in the mean 
velocity gradient. Such a result implies in particular that the nonlinear part of the 
pressure deformation correlation is a tensor which has the same principal axes as the 
Reynolds stress tensor, when the Reynolds number tends to infinity. 

Moreover, it  appears that, the dynamics of the return to isotropy is influenced by the 
invariant 111 defined as the trace of the cube of the tensor b as has already been argued 
by Lumley & Newmann (1977). In  all the previous experiments of return to isotropy 
this invariant is negative but it is positive in the present situation. A comparison 
with the study of Tucker & Reynolds (1 968) seems to indicate that when I11 is positive, 
the return to isotropy is slower than in the case when it is negative. 
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